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Abstract

Two-sample experiments (paired or unpaired) are often used to analyze treatment effects in life and environmental sciences. Quantifying an
effect can be achieved by estimating the difference in center of location between a treated and a control sample. In unpaired experiments, a shift
in scale is also of interest. Non-normal data distributions can thereby impose a serious challenge for obtaining accurate confidence intervals for
treatment effects. To study the effects of non-normality we analyzed robust and non-robust measures of treatment effects: differences of aver-
ages, medians, standard deviations, and normalized median absolute deviations in case of unpaired experiments, and average of differences and
median of differences in case of paired experiments. A Monte Carlo study using bivariate lognormal distributions was carried out to evaluate
coverage performances and lengths of four types of nonparametric bootstrap confidence intervals, namely normal, Student’s t, percentile, and
BCa for the estimated measures. The robust measures produced smaller coverage errors than their non-robust counterparts. On the other hand,
the robust versions gave average confidence interval lengths approximately 1.5 times larger. In unpaired experiments, BCa confidence intervals
performed best, while in paired experiments, Student’s t was as good as BCa intervals. Monte Carlo results are discussed and recommendations
on data sizes are presented. In an application to physiological sourceesink manipulation experiments with sunflower, we quantify the effect of an
increased or decreased sourceesink ratio on the percentage of unfilled grains and the dry mass of a grain. In an application to laboratory ex-
periments with wastewater, we quantify the disinfection effect of predatory microorganisms. The presented bootstrap method to compare two
samples is broadly applicable to measured or modeled data from the entire range of environmental research and beyond.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The size of an effect of an experimental treatment is an im-
portant quantity not only in environmental sciences. It facilitates
prediction and allows comparison of different treatments. It is
therefore of central interest to estimate the effect of a treatment
accurately. For this purpose, routine statistical methods like the
Pitman test (Gibbons, 1985) or the t-test, of a hypothesis ‘‘treat-
ment and control have identical means’’ are not sufficient.
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Instead, the present paper advocates usage of the difference of
means between treatment (X ) and control (Y ) populations, ab-
breviated as dAVE adopting the notation in Table 1. A confidence
interval for dAVE provides quantitative information, which also
includes a statistical test (by looking whether it contains zero)
but is not restricted to it.

Another objective of the present study is robustness of re-
sults against variations in distributional shape of the data.
The experimental data analyzed in this paper show consider-
able amounts of skewness and deviation from Gaussian shape,
which is a common feature of morphometric data. Therefore,
a measure such as the difference of medians (dMED) might be
more suited than dAVE because its accuracy is less influenced
by variations in distributional shape. Furthermore, it is thought
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to measure the effects of a treatment on the variability. For ex-
ample, a difference of standard deviations (dSTD) may indicate
other influences than intended. Therefore, dSTD and, as a robust
measure of the difference in scale, the difference in normal-
ized median absolute deviations (dMAD) (Tukey, 1977) are
investigated.

The mentioned measures of difference are used in unpaired
experiments, that means, where no dependence is assumed be-
tween treatment and control groups. We explore also paired
experiments, in which the same element of a group is sub-
jected to treatment and control. A paired experiment may be
analyzed as a single sample of the differences (Moses,
1985), leading to the mean of differences (AVEd), and its ro-
bust counterpart, the median of differences (MEDd) as mea-
sures. Note that the variation of a variable (say, X ) is
influenced by intra-group variation. Therefore, differences in
scale are not defined for paired experiments.

The bootstrap (Efron and Tibshirani, 1993) is the prime
source of confidence intervals for the variables measuring dif-
ferences between treatment and control. This is because (1) it
can be used without specifying the data distributions and (2)
also properties of rather complex statistical variables which
defy theoretical analysis (such as MEDd in case of two lognor-
mal distributions) can be evaluated by numerical simulation.
Bootstrap resampling has been successfully used for construct-
ing confidence intervals for location parameters, with the mean
as the most often studied statistic (e.g., Polansky and Schucany,
1997). Thomas (2000) analyzed a-trimmed mean and Huber’s
proposal 2 as robust location measures. An a-trimmed mean
from a sample of size n ignores the extreme INT(na) values
in each tail, with a chosen between 0 and 0.5 and INT being
the integer function, and takes the mean of the remainder.
(Note that in Section 3 we use a instead to denote coverage.)
Huber’s proposal 2 employs a more flexible weighting scheme
to reduce the influence of the extreme values in the tails and
achieve robustness. The variance/standard deviation is the
most often studied measure of scale in bootstrap confidence in-
terval construction for one sample (e.g., Frangos and Schucany,

Table 1

Analyzed difference measures, degrees-of-freedom

Measure n

UnpairedddAVE ¼ AVEðxÞ � AVEðyÞ nxþ ny� 2ddMED ¼ MEDðxÞ �MEDðyÞ nxþ ny� 2ddSTD ¼ STDðxÞ � STDðyÞ nxþ ny� 4ddMAD ¼ MAD0ðxÞ �MAD0ðyÞ nxþ ny� 4

PaireddAVEd ¼ AVEðx � yÞ n� 1dMEDd ¼ MEDðx � yÞ n� 1

Note: fxðiÞ; i ¼ 1;.; nxg are treatment data,
�

yðiÞ; i ¼ 1;.; ny

�
are con-

trol data. In paired experiments, nx¼ ny¼ n. AVEðxÞ ¼
Pnx

i¼1 xðiÞ=nx is sam-

ple mean, STDðxÞ ¼
Pnx

i¼1½xðiÞ � AVEðxÞ�2ðnx � 1Þ is sample standard

deviation, MED(x) is sample median, and MAD0(x)¼ 1.4826 MAD(x)

where MAD(x)¼median [jx(i)�MED(x)j] is sample MAD (normalizing is

used because a normal distribution has standard deviation MAD0); analogously

for y; AVEðx � yÞ ¼
Pn

i¼1½xðiÞ � yðiÞ�=n and MED(x� y)¼median of

½xðiÞ � yðiÞ�; i ¼ 1;.; n.
1990). For the purpose of comparing two samples, Zhou et al.
(2001) have found reasonably accurate results using the boot-
strap when compared with other statistical tests of equality of
means, similarly did Thorpe and Holland (2000) in case of test-
ing equality of variances. Tu and Zhou (2000) analyzed dAVE

and bootstrap-t confidence intervals in the presence of skewed
data and obtained accurate results in a Monte Carlo study.
The other difference measures studied in the present paper
have, to our knowledge, not been examined previously.

Bootstrap theory has developed several types of confidence
intervals (Efron and Tibshirani, 1993), differing in complexity
and computational effort, and it is not clear which type is most
accurate (i.e., has a coverage which comes closest to the nom-
inal level) or has shortest length for the difference measures.
Sample sizes in experiments can be 30 and even lower, which,
together with high skewness, can have a considerable effect on
coverage accuracy as found for one-sample experiments (Porter
et al., 1997). Therefore, after explaining the data used in the ap-
plications (Section 2) and the types of bootstrap confidence in-
tervals (Section 3) in a manner aimed at non-statisticians, we
describe a Monte Carlo study (Section 4) conducted to estimate
coverage accuracy and length of the intervals in dependence on
data sizes, skewnesses, and other distribution parameters.
Thereby, lognormal distributions for treatment and control
were employed. Logarithmic transformations of treatment (x)
and control ( y) data prior to the estimations were avoided for
the following reasons: (1) difference measures carry other in-
formation. For example, ddMED, calculated from the transformed
data, measures the ratio, not the difference of medians of un-
transformed distributions. (2) In the general case, the distribu-
tional shape is a priori unknown. The lognormal is used here
only as an example of a right-skewed distribution. (3) Different
types of transformations might be necessary for data from dif-
ferent experiments, which complicate interpretation of results.
The practical issue of the number of bootstrap resamplings nec-
essary for suppressing resampling noise is examined (Section
4). Results of applications are presented in Section 5.

2. Data

2.1. Physiological sourceesink manipulation
experiments with sunflower

Sunflower is an important crop and a renewable resource
grown for edible oil and increasingly for technical purposes.
The oil yield depends on several characteristics, among them
the number of filled grains per unit area (Cantagallo et al.,
1997) and the dry mass of grains. Unfilled grains, which com-
monly occur in mature plants, diminish the yield. Several rea-
sons for disturbed grain filling have been discussed, for
example, shortage of water and mineral nutrients (for review,
see Connor and Hall, 1997). Source limitation (Patrick, 1988)
is a further possible cause for reduced grain filling. It means
that the amount of photoassimilates exported by the green
leaves (source) is not sufficient to fill all grains (sink).

We analyze data from two of our experiments in the field,
carried out to study grain filling in sunflower in relation to
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sourceesink ratio. In the first experiment, sourceesink ratio
was increased by shading plants for 10 days during the stage
of floret initiation. Shading reduced the number of florets but
did not influence the number of leaves. This treated group of
plants was compared with the control (unshaded) group, with
possible effects of inter-plant variability (unpaired experiment).
In the second experiment, defoliation, sourceesink ratio was
decreased by excising all leaves on one side of each plant within
a group 3e4 days before the inflorescence (capitulum, ‘‘head’’)
opened. Thereby we drew advantage of the fact that, in an intact
sunflower plant, a leaf supplies photoassimilates to a defined
sector of the capitulum (Alkio et al., 2002). This allowed the
use of a single plant for treatment (defoliation) and control,
avoiding effects of inter-plant variability (paired experiment).

2.2. Disinfection effect of predatory microorganisms
in wastewater

Many large cities in coastal areas practice ocean disposal of
their sewage through marine outfall systems (Yang, 1995). At
those places, disinfection of the wastewater is of environmen-
tal relevance. An important chemical disinfectant is chlorine,
which, however, itself poses a risk to the environment. The ca-
pability of other potential, natural ‘‘disinfectants’’ like preda-
tory microorganisms in the water is therefore studied.

Yang et al. (2000) conducted a series of experiments with
mixtures of artificial seawater and wastewater taken from a
Taiwan sewage treatment plant. We analyze their data on the
influence of predatory microorganisms. The samples for this
paired experiment were prepared as follows. The seawatere
wastewater mixture was sterilized/not sterilized to produce
control/treatment samples without/with predators. As an indi-
cator of the disinfection strength, Yang et al. (2000) employed
the die-off rate of the test organism Escherichia coli. These
bacteria were added to the flasks, in which their initial concen-
trations were controlled to lie in a range from 107 to 108 cfu
per 100 ml. The die-off rate is the inverse of the mean lifetime
in the exponential formula describing the decay of the number
of bacteria with time; it was determined (Yang et al., 2000) us-
ing bacterial counts performed over time. Each pair of samples
(treatment, control) had the same values in other variables
such as salinity, mixing ratio or temperature. Table 2 in the pa-
per by Yang et al. (2000) contains the data.

The authors employed a paired t-test under the Gaussian as-
sumption and found a disinfecting effect of predatory microor-
ganisms. In other words, they concluded that AVEd, the
average of the difference in die-off rate (‘‘with predators’’ mi-
nus ‘‘without predators’’) is significantly greater than zero.

3. Bootstrap confidence intervals

The nonparametric bootstrap (Efron, 1979) is used to esti-
mate standard errors of the difference measures. In case of an
unpaired experiment, draw with replacement a bootstrap sam-
ple of same size fx�ðiÞ; i ¼ 1;.; nxg from the treatment
data set fxðiÞ; i ¼ 1;.; nxg, analogously draw a bootstrap
control sample

�
y�ðiÞ; i ¼ 1;.; ny

�
from the control data
set. In case of a paired experiment, draw pairs fx�ðiÞ;
y�ðiÞ; i ¼ 1;.; ng. Calculate the bootstrap replication of
a difference measure from the bootstrap samples. For example,ddAVE

�
¼ AVEðx�Þ � AVEðy�Þ where AVE(x�) is the sample

mean of x�. Bootstrap replicates of other measures are calcu-
lated in a similar manner. Repeat the procedure by resampling
and calculating until B bootstrap replications exist for each
measure. The bootstrap estimate of standard error, bse, is calcu-
lated as the sample standard deviation of the bootstrap replica-
tions. For example,

bse
�ddAVE

�
¼
(XB

b¼1

�ddAVE

�b
�
�ddAVE

��	2

=ðB� 1Þ
)1=2

;

where
D ddAVE

�E
¼
PB

b¼1
ddAVE

�b
=B and ddAVE

�b
denotes the

bth bootstrap replication of ddAVE . Bootstrap estimates of stan-
dard errors of other difference measures, ddMED, ddSTD, ddMAD,dAVEd, and dMEDd, are calculated similarly.

The bootstrap replications are used to construct equi-tailed
(1� 2a) confidence intervals for the estimated difference mea-
sures. Two approaches, standard error based and percentile
based, dominate theory and practice. The accuracy of the boot-
strap method depends critically on the similarity (in terms of
standard errors or percentiles) of the distribution of the boot-
strap replication and the true distribution. Various concepts ex-
ist for accounting the deviations between the two distributions
(Efron and Tibshirani, 1993; DiCiccio and Efron, 1996; Davi-
son and Hinkley, 1997; Carpenter and Bithell, 2000). Since it
is not clear which type of confidence interval is appropriate for
the difference measures we analyze four types: normal, Stu-
dent’s t, percentile, and BCa.

Coverage error is helpful to compare different confidence
intervals. Let bQðaÞ be the single endpoint of confidence in-
terval for a quantity of interest, Q, with nominal one-sided
coverage a: Prob

n
Q � bQðaÞo ¼ aþ C for all a. If the error,

C, is ofO
�
n�1=2

�
where n is the sample size, bQðaÞ is first-order

accurate; if C is ofOðn�1Þ then bQðaÞ is second-order accurate.
Hall (1988) determined coverage accuracies of bootstrap confi-
dence intervals, which are reported in the following subsec-
tions. However, his results apply only to ‘‘smooth functions’’
like dAVE, AVEd, or dSTD of a vector mean. Performances of
order statistics used here (dMED, MEDd, and dMAD) have to be
assessed on the basis of the results of the Monte Carlo study.

3.1. Normal confidence interval

The bootstrap normal confidence interval, in case of differ-
ence measure ddAVE, is


ddAVE � zð1�aÞ bse
�ddAVE

�
; ddAVE þ zð1�aÞ bse

�ddAVE

��
;

where z(1�a) is the 100(1� a)th percentile point of the stan-
dard normal distribution. For example, z(0.95)¼ 1.645.
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3.2. Student’s t confidence interval

The bootstrap Student’s t confidence interval, in the case ofddAVE, is


 ddAVE � tð1�aÞ
n

bse
�ddAVE

�
; ddAVE þ tð1�aÞ

n
bse
�ddAVE

��
;

where tn
(1�a) is the 100(1� a)th percentile point of Student’s

t-distribution with n degrees-of-freedom (Table 1). Unless
the true distribution for the used measure is normal, bootstrap
normal and bootstrap Student’s t confidence intervals are first-
order accurate.

3.3. Percentile confidence interval

The bootstrap percentile confidence interval, in the case ofddAVE, is�ddAVE

�ðaÞ
; ddAVE

�ð1�aÞ

;

that is, the interval between the 100ath percentile point and
the 100(1� a)th percentile point of the bootstrap distribution
of ddAVE

�
. Since an infinite number, B, of replications is neces-

sary to obtain an exact bootstrap percentile confidence inter-
val, in practice (finite B) an approximate interval is
employed. In Section 4, we evaluate the appropriate value of
B in case of the difference measures using Monte Carlo
simulations.

3.4. BCa confidence interval

The bootstrap bias-corrected and accelerated (BCa) confi-
dence interval, in the case of ddAVE, is�ddAVE

�ða1Þ
; ddAVE

�ða2Þ

;

where

a1¼ F

"bz0 þ
bz0 þ zðaÞ

1� bafbz0 þ zðaÞg

#
;

a2¼ F

"bz0 þ
bz0 þ zð1�aÞ

1� bafbz0 þ zð1�aÞg

#
: ð1Þ

Bias correction, bz0 , is computed as

bz0 ¼ F�1

 
number of replications where ddAVE

�b
< ddAVE

B

!
:

Acceleration, ba, can be computed (Efron and Tibshirani,
1993) as
ba ¼
Pnx

i¼1

Pny

j¼1

nDddAVE ði;jÞ

E
� ddAVE ði;jÞ

o3

6

"Pnx

i¼1

Pny

j¼1

nDddAVE ði;jÞ

E
� ddAVE ði;jÞ

o2

#3=2
; ð2Þ

where ddAVE ði;jÞ is the jackknife value of ddAVE. That is, let x(i)

denote the original treatment sample with point x(i) removed
and y( j ) the control sample without y( j ), thenddAVE ði;jÞ ¼ AVEfxðiÞg � AVEfyðjÞg where AVEfxðiÞg is the
sample mean calculated without point x(i). The mean,
hddAVE ði;jÞi, is given by f

Pnx

i¼1

Pny

j¼1
ddAVE ði;jÞg=

�
nxny

�
.

We have extended Efron and Tibshirani’s (1993) one-
sample recipe for computing ba to two-sample experiments.
Note that other extension methods to compute the acceleration
exist, such as using separate sums over i and j instead of the
nested sums used in Eq. (2). A Monte Carlo experiment (re-
sults not shown), employing separate sums and otherwise un-
changed conditions in comparison with the experiment shown
in Fig. 3, yielded only very small differences (vs. nested sums)
in case of robust measures and small differences in case of
non-robust measures, not affecting the main conclusions of
this paper.

Whereas bootstrap percentile confidence intervals are first-
order accurate, bias correction (i.e., shifting) and acceleration
(i.e., scaling) make BCa intervals second-order accurate.

3.5. Remarks

Bootstrap normal as well as bootstrap Student’s t confi-
dence intervals are symmetric about the estimate which may
produce unrealistic results, if the estimate sits at the edge of
its permissible range. Further, they can exhibit substantial cov-
erage errors for non-normally distributed replications. In par-
ticular, Hall (1988) demonstrated that the skewness of the
sampling distribution of ‘‘smooth functions’’ has a major
effect on the coverage accuracy.

Bootstrap percentile confidence intervals, while avoiding
such deficiencies, can have profound coverage errors when
the distribution of replications differs considerably from the
(in practice unknown) distribution of the estimate. The BCa
method accounts for such differences by adjusting for bias
and scaling (see Efron and Tibshirani, 1993). However,
Davison and Hinkley (1997) pointed out that BCa confidence
intervals produce larger coverage errors for a/0 (for which
the right-hand side of Eq. (1) / F

� bz0 � 1=ba�s0) for
a/1. Finally, Polansky (1999) found that percentile-based
bootstrap confidence intervals have intrinsic finite sample
bounds on coverage.

Other, computing-intensive methods (Efron and Tibshirani,
1993; Davison and Hinkley, 1997) are briefly mentioned. Boot
strap-t confidence intervals are formed using the standard
error, bse

�
, of a single bootstrap replication. For simple quantities

like the mean, plug-in estimates can be used for bse
�
. However,

for complicated quantities (as in Table 1), no plug-in estimates
are available. A second bootstrap loop (bootstrapping from
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bootstrap samples) had to be invoked which would mean
a marked increase in computing time. Similarly, bootstrap cal-
ibration or double bootstrap methods invoke a second loop.

Tu and Zhou (2000) analyzed dAVE for lognormally distrib-
uted data. In that case, a plug-in estimate for bse

�
is available

which allowed the use of bootstrap-t intervals without a second
loop of calculation. They further employed parametric resam-
pling (from a lognormal with estimated parameters) and found
good coverage performance in a Monte Carlo study. The
emphasis of the present paper is to study how various robust/
non-robust measures of differences in location and scale perform
in dependence on data sizes. The data are assumed to exhibit
skewness, but not to be distributed in an a priori known way.
Thus we use nonparametric resampling.

We also avoid data transformations. In the Monte Carlo
study, x and y are taken from lognormally distributed popula-
tions. Since the distribution function of the difference between
two lognormal distributions cannot be obtained analytically, it
is not possible to give a transformation of dAVEd or dMEDd

which would result in advantageous, normally distributed
measures.

4. Monte Carlo study

Monte Carlo simulations were carried out for studying
coverage performances and lengths of the bootstrap confidence
interval types described in Section 3. Simulated treatment and
control data were taken from lognormal distributions:
X w LN(a1, b1, s1) where a1, b1, and s1 are location, scale,
and shape parameters, respectively; analogously, Y w LN(a2,
b2, s2); the correlation between X and Y is denoted as rLN

(see Appendix 1). The lognormal distribution is commonly
found in natural sciences (Aitchison and Brown, 1957).

Table 2 lists the Monte Carlo designs. Lognormal parame-
ters s1 and s2 are restricted to two values (‘‘small’’, ‘‘large’’),
thereby encompassing the values found in the applications
(Section 5). Each design was studied for various combinations
of nx and ny ˛f5; 10; 20; 50; 100g. Other lognormal designs
(same as designs 1 and 2, with b1 and/or b2 set to 25.3)
were also studied.

Values for a were set to 0.025, 0.05, and 0.1 for which
nsim¼ 10,000 simulations (simulated pairs of treatment and
control data sets) yield a reasonably small standard error, s,
of nominal coverages

�
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ=nsim

p
� 0:003

�
. To as-

sess the bootstrap resampling error, due to finite B, a prelimi-
nary Monte Carlo study was carried out. Fig. 1 shows the
coefficient of variation of the 97.5% quantile (upper bootstrap
percentile confidence bound) approaching saturation for

Table 2

Monte Carlo designs: lognormal parameters and theoretical difference

measures

Design a1 b1 s1 a2 b2 s2 dAVE dMED dSTD dMAD MEDd

1 0 4 0.2 0 4 0.2 0 0 0 0 0

2 0 4 0.8 0 4 0.2 1.43 0 4.39 2.17 0

Note: AVEd¼ dAVE.
B� Bsat z 2000 in case of ddSTD and B� Bsat z 1000 in
case of the other difference measures. Design and choice of
nx and ny in Fig. 1 constitute a conservative approach as re-
gards choice of B: using (1) smaller values for nx and ny, (2)
smaller scale and shape parameters b1, b2, s1, and s2, (3) larger
a, or (4) bootstrap normal confidence intervals gave lower Bsat

values while using (5) a1¼ 1.0, or (6) rLN¼ 0.6 produced
similar Bsat values (not shown). We thus conclude that using
B¼ 1999 suppressed reasonably well resampling noise in the
Monte Carlo study, in agreement with the general recommen-
dation of Efron and Tibshirani (1993).

Figs. 2 and 3 show the results (empirical vs. nominal cov-
erages) of the Monte Carlo study for unpaired and correctly
specified (rLN¼ 0) experiments. In general, the empirical cov-
erages approach their nominal levels as the sample sizes (nx,
ny) increase, as expected. However, the decrease of coverage
error is not monotonic, as the ‘‘jumps’’ between nx¼ ny and
nx s ny reveal.

The ddAVE measure of difference in location is worse (in
terms of coverage error) than ddMED in nearly all cases, espe-
cially when treatment and control populations differ in the log-
normal parameters shape (s1 vs. s2, Fig. 3), scale (b1 vs. b2,
results not shown), or both (results not shown). Even more
pronounced are the deficiencies of ddSTD as measure of differ-
ence in scale in comparison with ddMAD, with similar depen-
dences on the lognormal parameters as in the case of ddAVE .

The influence of lognormal parameters b1, b2, s1, and s2 on
the coverage error of ddMED seems to be relatively weak. The
coverage error of ddMAD is more strongly affected, especially
when treatment and control differ in one of the parameters
(or in both). In such cases (design 2), normal or Student’s t
confidence intervals exhibit higher coverage errors than BCa
intervals. This seems to be because of the high degree of skew-
ness (data not shown) of the bootstrap distribution of ddMAD

and ddMED. Additional Monte Carlo experiments with
a1¼ 1.0, b1¼ 4.0, s1¼ 0.2, a2¼ 0, b2¼ 4.0, s2¼ 0.2,
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Fig. 1. Coefficient of variation (standard deviation divided by the mean) of

the 97.5% quantile (upper bootstrap percentile confidence bound) in depen-

dence on the number of bootstrap resamplings, B, for a1¼ 0, b1¼ 1.0,

s1¼ 1.0, a2¼ 0, b2¼ 0.5, s2¼ 0.5, nx¼ 100, ny¼ 100, rLN¼ 0, and

nsim¼ 10,000.
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Fig. 2. Monte Carlo results, unpaired experiment (rLN¼ 0), design 1: empirical coverages (a¼ 0.025, 0.05, and 0.1; upper and lower limits) in dependence on

sample sizes; nominal levels as horizontal lines (thickness corresponds to nominal standard error). Note: y-axis measures coverages, x-axis data sizes; axes titles

denote columns and rows of panels.
rLN¼ 0, and 0.6, produced nearly identical coverage errors
(results not shown) as the experiments with design 1.

In general, differences in empirical coverage between Stu-
dent’s t and normal confidence intervals were negligible in the
Monte Carlo study (therefore, results of normal intervals are
not shown). On the other hand, BCa intervals yielded consid-
erably lower coverage errors than percentile intervals, espe-
cially for measure ddMAD (for data sizes T 20).

Of practical importance is to decide where to use BCa and
where to use Student’s t intervals. In case of difference in
location, we favor ddMED as measure and the BCa confidence
interval. For nxT20 and nyT20, this choice provides cover-
ages which seem to be reasonably low in error and also robust
against variations in lognormal parameters (at least over the
ranges investigated here, see Table 2).
In the case of difference in scale, we favor ddMAD as mea-
sure and the BCa confidence interval. For data sizes T 50,
this provides acceptable coverage errors and clearly better
robustness against variations in lognormal parameters than
Student’s t intervals.

Fig. 4 shows the result for unpaired ( ddAVE, ddMED) mis-
specified (rLN¼ 0.6, 0.9) experiments. The coverage error is
serious already for rLN¼ 0.6 in all cases. The coverage error
does not approach zero with sample size. Similar behavior
was found for other Monte Carlo designs (not shown). Fig. 4
further shows the result for paired ( dAVEd, dMEDd) experi-
ments with rLN¼ 0.6 and 0.9. dMEDd as a robust measure of
location yields smaller coverage errors than dAVEd for all
investigated interval types, sample sizes n� 10, and also
for other analyzed Monte Carlo designs (not shown here).
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Fig. 3. Monte Carlo results, unpaired experiment (rLN¼ 0), design 2 (cf. Fig. 2).
For dMEDd, dependence on n is rather weak; already 10 treat-
ment/control data pairs produce empirical coverages close to
the nominal levels (Student’s t and BCa confidence intervals).
Nearly identical results are obtained either for rLN¼ 0.6 or 0.9
(Fig. 4) or for rLN¼ 0 (results not shown).

Fig. 5 shows the resulting average confidence interval
lengths for unpaired experiments (designs 1 and 2). As
expected, the length decreases with the sample sizes. This
decrease has noticeable ‘‘jumps’’ between nx¼ ny and nx s ny

in the case of design 2. The robust measures produce clearly
wider (by a factor of approximately 1.5) intervals than their
non-robust counterparts. In cases of only minor deviations of
the data distributions from the normal shape, the non-robust
measures might therefore be preferred. For the analysis of agri-
cultural data here, we use the robust versions because these data
exhibit considerable amounts of skewness (Fig. 7). The average
interval length depends only weakly on interval type, especially
for data sizes above 10 (Fig. 5). Similar findings were obtained
in the Monte Carlo simulations for paired experiment (Fig. 6).

5. Applications

5.1. Physiological sourceesink manipulation
experiments with sunflower

In both experiments (shading and defoliation), sunflower
hybrid ‘‘Rigasol’’ was used at a low density of 1.33 plants/m2

to minimize inter-plant competition. The overall effect of shad-
ing on the sourceesink ratio was quantified by dividing the total
green leaf area at the end of flowering by the total number of
florets. Treated and control plants had ratios of 12.5 and
9.0 cm2 per floret (medians), respectively. After physiological
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Fig. 4. Monte Carlo results: empirical coverages, mis-specified unpaired and paired experiments, design 1 (cf. Fig. 2).
maturity, all grains from each plant were sorted (filled, un-
filled), counted, and average dry mass per grain was deter-
mined. In the defoliation experiment, mature sunflower
capitulae were divided into a treated 1/4-sector (corresponding
to the defoliated stem side, see Alkio et al., 2002) and a control
1/4-sector (located opposite of the treated sector). Grains from
both sectors were sorted, counted, and average dry mass per
grain was determined.

Fig. 7 reveals that the data distribution for percentages of
unfilled grains is roughly lognormal in shape, similarly for dry
mass per grain data (not shown). Estimated lognormal parame-
ters lie in the ranges for the Monte Carlo designs (Section 4).
Data sizes are large enough (see Section 4) to allow estimation
of reliable confidence intervals for difference measures in
location, and acceptably accurate confidence intervals for differ-
ences in scale.

Fig. 8 shows the results, that is, the estimated measures of
difference in location and scale, for the sunflower data (percent-
ages of unfilled grains). There is overlap between Student’s t
and BCa (a¼ 0.025) confidence intervals, as well as some
amount of agreement between the robust and non-robust mea-
sures ( ddMED vs. ddAVE, ddMAD vs. ddSTD, and dMEDd vs. dAVEd).

In the shading experiment (unpaired), the confidence inter-
vals indicate that the differences in location between treatment
and sample are significant in the sense that the intervals do not
contain zero. One-sided Wilcoxon tests conclude the same.
Increasing the sourceesink ratio (by shading during floret
initiation) reduced the percentage of unfilled grains in sunflower.
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Fig. 5. Monte Carlo results, unpaired experiment (rLN¼ 0), designs 1 and 2: average confidence interval lengths in dependence on sample sizes (a¼ 0.025;
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unpaired and paired experiments, design 1 (cf. Fig. 5).
The further information provided by using ddMED is that this re-
duction equals�2.7% points with 95% BCa confidence interval
(�4.1%, �0.9%). The shading-induced increase in dry mass
per single, filled grain is 16.8 mg ( ddMED) with 95% BCa confi-
dence interval (12.1 mg, 20.7 mg). The difference in scale (var-
iability) in the shading experiment, however, is not significantly
different from zero, suggesting that shading influenced plant
growth only via increasing the sourceesink ratio.

In the defoliation experiment (paired), the difference (treat-
ment vs. control) in location is significantly greater than zero
(confirmed by Wilcoxon tests). Decreasing the sourceesink ra-
tio (by removing supplying leaves) increased the percentage of
unfilled grains in sunflower by 6.4% ( dMEDd) with 95% BCa
confidence interval (5.1%, 9.0%). The defoliation-induced de-
crease in dry mass per single, filled grain is �6.9 mg ( dMEDd)
with 95% BCa confidence interval (�9.6 mg, �4.6 mg).

These results indicate that grain filling in sunflower is con-
trolled by the amount of photoassimilates available and the
number of grains, that means, the sourceesink ratio. See Alkio
et al. (2003), where further experimental data are analyzed.

5.2. Disinfection effect of predatory microorganisms
in wastewater

Yang et al. (2000) determined die-off rates of E. coli for
20 pairs of water samples. The authors removed two pairs,
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of


medianðxÞ �

�ca1 þcb1

��
, analogously for ca2. Deviations from normal shape are as follows. Shading, treatment: skewness¼ 1.03, kurtosis¼ 0.66; shading,

control: skewness¼ 1.40, kurtosis¼ 1.87; defoliation, treatment: skewness¼ 0.28, kurtosis¼�1.05; defoliation, control: skewness¼ 0.99, kurtosis¼ 1.07.
for which they could not exclude experimental errors, as out-
liers. The remaining n¼ 18 pairs yield ddAVE ¼ 0:0126 min�1,
that means, the die-off rate of E. coli is larger for water sam-
ples with existing predatory microorganisms than for samples
without. Yang et al. (2000) analyzed ddAVE with a paired t-test
and found that the difference is significant at the 98.15% level.
They further gave a 95% confidence interval for ddAVE of
(0.0024 min�1; 0.0228 min�1).

Our analysis using 2SAMPLES (Appendix 2) basically
confirmed Yang et al.’s (2000) analysis of ddAVE. The bootstrap
Student’s t 95% confidence interval is (0.0027 min�1;
0.0225 min�1), but this may be slightly down-biased, as indi-
cated by the bootstrap BCa interval of (0.0060 min�1;
0.0269 min�1). We also confirmed the significance level of
98.15% by employing a version of 2SAMPLES with
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Fig. 8. Sunflower experiments; resulting estimates and 95% confidence inter-

vals for difference measures (treatment vs. control) in percentage of unfilled

grains.
a¼ 0.00925, 0.00900, and 0.00875. The correlation coeffi-
cient (treatment vs. control) is 0.22. However, usage of ddAVE

might be inappropriate for these data because they exhibit con-
siderable amounts of skewness (treatment, 1.8; control, 1.2).
Taking ddMED instead of ddAVE gave another result (Fig. 9).
This robust measure of difference in location had the following
confidence intervals: bootstrap Student’s t, (�0.0051 min�1;
0.0150 min�1) and bootstrap BCa, (�0.0008 min�1;
0.0166 min�1). Both types of intervals for ddMED indicate
a non-significant effect. We do not want to dispute the finding
of Yang et al. (2000) that predatory microorganisms in waste-
water have a disinfecting effect, but we think that more data
and experiments are required to evaluate whether this is a valid
conclusion.
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94 M. Mudelsee, M. Alkio / Environmental Modelling & Software 22 (2007) 84e96
6. Summary and conclusions

The following measures for difference in location between
treatment and control were analyzed:

Unpaired experiment: � ddAVE ðdifference of averagesÞ;
� ddMED ðdifference of mediansÞ:

Paired experiment: � dAVEd ðaverage of differencesÞ;
� dMEDd ðmedian of differencesÞ:

Likewise the following measures for difference in scale:

Unpaired experiment: � ddSTD (difference of standard
deviations),
� ddMAD ðdifference of MADsÞ:

A Monte Carlo study using bivariate lognormal distributions
was carried out to evaluate coverage performances of four
types of nonparametric bootstrap confidence intervals for the
estimated measures: normal, Student’s t, percentile, and BCa.

The robust measures ( ddMED, dMEDd, ddMAD) performed
better (i.e., had smaller coverage errors) than their non-robust
counterparts over the entire investigated space of lognormal
parameters, data sizes, and correlation coefficients. On the
other hand, the robust measures are less efficient: they pro-
duced average confidence interval lengths, which were ap-
proximately 1.5 times larger than those of the non-robust
measures. The practical implications of the Monte Carlo study
are as follows.

� BCa and Student’s t confidence intervals of dMEDd as mea-
sure of location of difference offer good coverage perfor-
mance in paired experiments for nT10.
� BCa confidence intervals of ddMED as measure of difference

in location offer good coverage performance in unpaired
experiments for nxT20 and nyT20.
� BCa confidence intervals of ddMAD as measure of differ-

ence in scale offer acceptably coverage performance in un-
paired experiments for nxT50 and nyT50.
� For applications where data distributions exhibit consider-

able deviations from the normal shape, it is advised to use
the robust measures to achieve a good coverage accuracy.
For only minor deviations from the normal shape, the
more efficient non-robust measures can be used.

Reliable confidence intervals for smaller data sizes require
more complex types of bootstrap confidence intervals, involv-
ing a second bootstrap loop (e.g., Efron and Tibshirani, 1993).
The Monte Carlo study further revealed that mis-specification
(i.e., use of unpaired method for correlated data) leads to
rather large coverage errors.

In the analysis of own field experiments with sunflower, we
quantified the influence of an altered sourceesink ratio on the
percentage of unfilled grains and the dry mass per grain. There
is evidence that grain filling is significantly controlled by the
sourceesink ratio. In the analysis of published data from
experiments on the disinfection effect of predatory microor-
ganisms in wastewater, we found that the claimed significant
effect, based on using ddAVE , becomes non-significant when
using the more appropriate robust measure, ddMED.

In general, the method presented here for quantifying the
differences in location and scale between two samples is
broadly applicable e to data from fields as biology, agriculture,
medicine, and econometrics. It avoids transformations and
appears to be robust with respect to the distributional shape.

In particular, this approach to compare two samples using
bootstrap confidence intervals can be applied to a range
of topics from environmental research raised in recent issues
of this journal. For example, Goyal and Sidharta (2004)
compared measured and modeled distributions of suspended
particulate matter in the area around a thermal power station
in India. The demonstration of non-significant differences
would lend further credence to their modeling effort. Also, the
effects of different implementations of environmental models
can be quantified. Giannakopoulos et al. (2004) used a chem-
ical transport model with/without a scheme of mixing pro-
cesses in the planetary boundary layer (PBL) to study global
ozone distributions. The PBL scheme seems to have a signifi-
cant influence, which could be quantified using bootstrap con-
fidence intervals. Peel et al. (2005) found that the selection of
biophysical parameters for eucalypts had negligible influence
on the simulation of the January climate of Australia. Such
a conclusion could be strengthened by evaluating the differ-
ences using bootstrap confidence intervals. Finally, also real-
time monitoring systems could benefit from incorporating
a ‘‘bootstrap tool’’ into their data analysis. For example,
Chrysoulakis et al. (2005) developed a software for low-reso-
lution image analysis to detect the occurrence of major indus-
trial accidents using satellite imagery data. In this case, the
control sample would come from the data before the accident
and the treatment sample would come from thereafter. The hy-
pothetical time boundary between control and treatment would
be varied and significant changes in location tested. The new
data coming in would require to update this test permanently.
Quinn et al. (2005) designed a system for real-time manage-
ment of dissolved oxygen in a ship channel in California,
which might be further enhanced using data analysis with
bootstrap confidence intervals.
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Appendix 1. Technical details

The Monte Carlo samples x and y (treatment X w LN(a1,
b1, s1), control Y w LN(a2, b2, s2)) were generated from

http://www.climate-risk-analysis.com
http://www.climate-risk-analysis.com
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a binormal distribution (U1, U2) w N(m1, s1, m2, s2, correlation
rN) by the transformations x¼ exp(U1þ a1), y¼ exp(U2þ a2)
with b1¼ exp(m1), b2¼ exp(m2), using the pseudorandom
number generator RAN and routine GASDEV from Press
et al. (1996). The correlation coefficient between X and Y is

rLN ¼ ½expðrNs1s2Þ � 1�=
n


exp
�
s2

1

�
� 1
�1=2


exp
�
s2

2

�
� 1
�1=2
o
:

For lognormally distributed X and Y, theoretical difference
measures dAVE, dMED, dSTD, and AVEd are easily obtained
from the properties of the lognormal (e.g., Johnson et al.,
1994). Calculation of dMAD requires the MAD value for a log-
normal distribution, which is given by the minimum of the two
solutions of the equation (here for X ):

erf

�
logð1þMAD=b1Þffiffiffi

2
p

s1


� erf

�
logð1�MAD=b1Þffiffiffi

2
p

s1


¼ 1

where erf is the error function. For the Monte Carlo simula-
tions, this equation was solved by numerical integration of
the normal densities. Calculation of MEDd is hindered by
the fact that the density function of the difference of two log-
normally distributed variables is in the general case analyti-
cally unknown (e.g., Johnson et al., 1994). MEDd was,
therefore, determined by numerical simulation which outper-
formed numerical integration of the density in terms of preci-
sion and computing costs.

The normal distribution F was approximated using routine
ERFCC of Press et al. (1996); the inverse normal distribution
was approximated using the routine of Odeh and Evans (1974);
the inverse Student’s t-distribution was approximated using the
formula in Abramowitz and Stegun (1965). Numerical accuracy
of theoretical difference measures is evaluated as <10�3.

Appendix 2. Description of software

Program title: 2SAMPLES; developer: Manfred Mudelsee;
year first available: 2004; hardware requirements: IBM-
compatible computer system, 32 MB or more RAM, Pentium
type CPU, VGA display; software requirements: Windows 98
system or higher, freeware graphics program Gnuplot (Version
3.6 or higher) residing as ‘‘gnuplot.exe’’ in path; program lan-
guage: Fortran 90; program size: 1.1 MB; availability and
cost: 2SAMPLES is free and, together with Gnuplot, available
for download from http://www.climate-risk-analysis.com.

Data format: control and treatment data are in separate
ASCII files, with decimal point and one value per line. Data
size limitations: virtually none.

After starting the program, input the data file names.
2SAMPLES plots data as histograms, using the class number
selector of Scott (1979). If nx¼ ny, you can choose between
paired and unpaired experiment type, if nx s ny, the type is
unpaired. Then input a (0.01, 0.025, 0.05, or 0.1). 2SAMPLES
calculates difference measures (paired or unpaired) with
(1� 2a) bootstrap confidence intervals (Student’s t, BCa)
using B¼ 1999. The result is plotted on screen and also
written to output file ‘‘2SAMPLES.DAT’’.

Appendix 3. Software validation

2SAMPLES was subjected to a validation experiment with
SPSS for Windows, Version 13.0 (SPSS, Inc., Chicago, IL
60606, USA). 2SAMPLES and SPSS calculate confidence
interval points in a different manner: bootstrap vs. Student’s
t approximation (Norušis, 2004). The following setting was
therefore employed to ensure ‘‘ideal’’ conditions for each soft-
ware: unpaired experiment with X and Y normally distributed;
large, equal data sizes; and ddAVE as estimated measure of the
difference in location. 2SAMPLES’ Student’s t confidence
interval was selected because it corresponds closest to SPSS’s
Student’s t approximation. Significant differences in confi-
dence interval points would then likely indicate a programming
error, meaning that the validation has failed.

Two thousands comparisons of the 97.5% confidence inter-
val point were made. The interval points were calculated auto-
matically using a Fortran 90 wrapper (2SAMPLES) and
SPSS’s Production Mode Facility. Evaluating visually the
result of the comparison reveals only minor differences between
2SAMPLES and SPSS (Fig. 10). This was confirmed by sub-
jecting the 2000 differences in confidence interval point to
a paired t-test (under SPSS). The mean of the differences is
(at five significant digits) equal to zero, the 95% confidence in-
terval for the true difference, SPSS confidence interval point
minus 2SAMPLES confidence interval point, is (�0.00009,
0.00008), and the test concludes that the difference is not sig-
nificant at the 95% level. Using the BCa interval type instead
of Student’s t gave the same test result, although the 95% con-
fidence interval for the true difference was wider, (�0.00025;
0.00017). We conclude that 2SAMPLES has passed the
validation.
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