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unevenly spaced weather/climate time series$
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1. Introduction

Persistence is characteristic for weather and climate

fluctuations (e.g. Wilks, 1995). Quantifying the memor-
izing ability from proxy records of past climates extends
our understanding of natural weather and climate

variability. The simplest yet successful persistence model
is a first-order autoregressive (AR(1)) process where a
fluctuation depends only on its own immediate past plus
a random component (Gilman et al., 1963; Mann and

Lees, 1996). Because the proxy data (from sediment or
ice cores) are usually unevenly spaced in time, a simple
estimation of the AR(1) model via the autocorrelation

coefficient r has to be replaced by fitting the AR(1)
model (Robinson, 1977)

xð1ÞBNð0; 1Þ;

xðiÞ ¼ xði@1Þ exp @½tðiÞ@tði@1Þ�=t
� �

þ eðiÞ;

i ¼ 2;y; n; ð1Þ

to the (scaled) data x. Therein, t is time, eðiÞBN 0;ð
1@exp @2½tðiÞ@tði@1Þ�=t

� �
Þ is the heteroscedastic

random component and t > 0 is the decay period of the
autocorrelation function of model (1). We denote t as

persistence time. Various measures of persistence exist in
literature (e.g. von Storch and Zwiers, 1999). The
advantage of using model Eq. (1) is that t corresponds
directly to the relevant physical time scale.

The Fortran/Gnuplot program TAUEST estimates t.
Since geological interpretation of the result requires
knowledge about the statistical accuracy, TAUEST

includes Monte Carlo simulations. TAUEST shows
scatterplots for comparing data and fit residuals which
help to assess the suitability of the fitted model.

The fit subroutine of TAUEST was also combined
with the SPECTRUM frequency-analysis package for
unevenly spaced data (Schulz and Stattegger, 1997) to

quantify the analogue of persistence in the frequency
domainFred noise (Schulz and Mudelsee, 2002).

2. Estimation procedure

For x to describe weather/climate fluctuations,

deterministic signals have to be removed prior to the
estimation. TAUEST allows (1) subtraction of the mean
and (2) linear unweighted detrending. For some data it

might be advisable to consider more complicated
functions such as a seasonal cycle.
Since Eq. (1) can be fitted only numerically, it is

advantageous to rewrite it and to introduce scaling.
Defining a :¼ expð@1=tÞ leads to

xð1ÞBNð0; 1Þ;

xðiÞ ¼ xði@1Þa tðiÞ@tði@1Þ½ � þ eðiÞ; i ¼ 2;y; n; ð2Þ

and the parameter a is bound between 0 and 1. The

least-squares estimator #aa thus minimizes

SðaÞ ¼
Xn

i¼2

xðiÞ@xði@1Þa tðiÞ@tði@1Þ½ �� �2
: ð3Þ

#tt ¼ @1=lnð #aaÞ is then the persistence time estimate
(without bias correction). Note that in the situation of
equidistance (tðiÞ@tði@1Þ ¼: d ¼ constant) Eq. (3)

leads to #aa ¼ #rr1=d , where

#rr ¼
Xn

i¼2

xðiÞxði@1Þ
Xn

i¼2

xði@1Þ2
,

ð4Þ
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is the usual autocorrelation coefficient estimator. The
choice of time units (t-scaling) adopts the finding of own

numerical experiments, namely that #tt ðunitsÞ ¼ 1 offers
a stable solution and fast convergence. (The final result #tt
is rescaled to the original time units.) x is scaled to unit

variance. SðaÞ is minimized using Brent’s method (Press
et al., 1989) with starting value astart ¼ 1=e.
Monte Carlo simulations (Efron and Tibshirani,

1993) allow the accuracy of the estimate #tt to be

evaluated. Let x*
j¼1 be a time series generated after

Eq. (1) with a value of t equal to #tt. The estimation yields
#tt*j¼1. Simulation and estimation is repeated, B times in

total. The median medð#tt*j¼1;y;BÞmay be compared with #tt
to evaluate the estimation bias. The 5% and 95%
percentiles constitute an equi-tailed 90% confidence

interval for #tt. To suppress simulation noise, at least 2000
simulations are recommended (Efron and Tibshirani,
1993).

It is well known that in the situation of equidistant
data and mean detrending, the estimator #rr has a bias of
approximately @ð1þ 3rÞ=ðn@1Þ (Kendall and Stuart,
1966). Numerical experiments with artificial time series

suggest a similar bias for the analogous parameter in a
situation of non-equidistance,

#rrnon ¼ ð #aaÞ
%dd ; ð5Þ

where %dd is the average spacing. In many practical
applications (n more than a few hundred), the bias is
negligible. However, TAUEST offers a correction, by

prescribing the value of t for the Monte Carlo
simulations to a higher value than #tt. If
medð#tt*j¼1; y; BÞE#tt, the prescribed value is an unbiased

estimate.

3. Computer program

TAUEST is a batch program, combining calculation

(Fortran 77) and visualization (Gnuplot 3.6 or higher).
Use the DOS mode or the DOS window on your PC.
(Installation to other systems is straightforward.)

Gnuplot executable should be in the path. Start the
program with the command ‘‘TAUEST’’. Supply path
and data file name. The time series is plotted on the

screen. Proceed with ‘‘Enter’’. Supply n. Supply whether
t ¼age or time. #tt is not invariant in this respect
(although the effect is negligible unless n is very small).
Choose the detrending method (no/mean/linear). ‘‘No’’

assumes that the original time series has zero mean and
no trend. Select ‘‘mean’’ or ‘‘linear’’ when either the data
should be accordingly detrended or have already been

detrended.
TAUEST calculates #tt and plots SðaÞ. This allows to

check whether SðaÞ is well-behaved or has, for example,

several local minima. That situation might occur for
extremely irregular data, very small n or an unsuited

model. (Press ‘‘Enter’’ key.) The lag-1 scatterplot of the
data (xði@1Þ vs xðiÞ) and of the residuals (rði@1Þ vs

rðiÞ) is shown. The residuals are calculated as

rðiÞ ¼ xðiÞ@xði@1Þ exp @½tðiÞ@tði@1Þ�=#tt
� �

;

i ¼ 2;y; n; ð6Þ

and plotFin case of a proper fit and a suited AR(1)
modelFas a cloud without orientation whereas auto-
correlated x produce a cloud oriented along the 1 : 1 line.
TAUEST then displays the setting and the estimation

result. Input the number of Monte Carlo simulations
and seed the random number generator. The empirical
relation, CPU time (s) E0:00018nB, was determined for

a PC with a 433MHz Pentium processor. If you choose
then to correct for bias, TAUEST gives the value of
#rrnon. After entering the prescribed value rpre (you may

try rpre ¼ #rrnon þ ð1þ 3 #rrnonÞ=ðn@1Þ), the value t ¼
@ %dd=lnðrpreÞ is then used for the simulations.
After the simulations, TAUEST plots a kernel density

estimate (Silverman, 1982, 1986) of #tt*j¼1;y;B together

with medð#tt *
j¼1;y;BÞ, the 5% and 95% percentiles and the

uncorrected estimate #tt. If the median is sufficiently close
to #tt, you obtain a bias-free persistence estimate with

90% confidence interval.
TAUEST writes the scatterplot data, the simulated

persistence times and the kernel density values in output

files. The source codes of TAUEST on the IAMG server
give further details.

4. Example

The oxygen-isotope (d18O) record from the GISP2 ice
core (Grootes and Stuiver (1997), data from UW

Quaternary Isotope Laboratory, 2000) document tem-
perature fluctuations over Greenland. Here, we analyse
data from the high-sampling interval AD 818–1800

(n ¼ 8733, %dd ¼ 0:11 years). Data from after AD 1800 are
excluded since they may be affected by anthropogenic
climate perturbations.

The data (Fig. 1A) show only a small trend and are
approximately Gaussian distributed (Fig. 1B).
The estimation with TAUEST, using mean subtrac-

tion, yields #tt ¼ 1:83 years. The lag-1 scatterplots
(Figs. 1C and D) indicate a strong reduction of
autocorrelation between the residuals and thus attest
that the AR(1) model is suited well for describing the

data. With n so large, estimation bias is negligible. The
90% confidence interval for #tt is [1.63; 2.05] years, as
derived from 2000 Monte Carlo simulations (Fig. 1E).

The persistence estimate proved to be robust against
the detrending method: Neither linear detrending nor
removing the seasonal cycle (using SPECTRUM’s

harmonic analysis tool) changed #tt significantly (1.83
and 1.86 years, respectively). Also, using the coarser 1m
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data from GISP2 (Grootes and Stuiver, 1997) gave an

indistinguishable result (1.93 years).
The attempt to interpolate the data to equidistance

and use #rr for persistence estimation would, in general,

introduce an artificial statistical dependence and thus
lead to an overestimation of t. A value of 2.15 years
would result in case of GISP2’s high-sampling data, and

a value of 3.98 years in case of the 1m data.
We note that previous persistence quantification

attempts using a power-law model (e.g., Koscielny-
Bunde et al., 1998) lack tests of model suitability and

also do not provide confidence intervals.
To conclude, using the persistence estimation pro-

gram TAUEST for unevenly spaced data, evidence is

found that natural temperature fluctuations of the past
B1100 years (as recorded in ice from Greenland) have

the same memory as was found for recent global
temperature (equidistant data), namely about two years
(Allen and Smith, 1994).
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