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Abstract

Paleoclimatic time series are often unevenly spaced in time, making it difficult to obtain an accurate estimate of their
red-noise spectrum. A Fortran 90 program (REDFIT) is presented that overcomes this problem by fitting a first-order
autoregressive (AR1) process, being characteristic for many climatic processes, directly to unevenly spaced time series.
Hence, interpolation in the time domain and its inevitable bias can be avoided. The program can be used to test if peaks

in the spectrum of a time series are significant against the red-noise background from an AR1 process. Generated and
paleoclimatic time series are used to demonstrate the capability of the program. r 2002 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Spectral analysis is an important tool in climate
research because it allows the variance of a time series to

be separated into contributions associated with different
time scales. It thus helps to understand better the
physical processes, which generate the variability re-

corded in a time series. Spectra of paleoclimatic time
series frequently show a continuous decrease of spectral
amplitude with increasing frequency (‘‘red-noise’’).

Hasselmann (1976) demonstrated that a first-order
autoregressive (AR1) process is sufficient to explain this
climatic red-noise signature. Accordingly, the AR1

model is often used as null hypothesis to assess whether
or not the variability recorded in a time series is
consistent with a stochastic origin of this type (Gilman
et al., 1963). Such a test involves estimation of an AR1

parameter from the time series under consideration. For
evenly sampled time series this is a relatively straightfor-
ward procedure (e.g. Percival and Walden, 1993).
However, most paleoclimatic time series are unevenly

spaced (i.e., intervals between sampling times are not
constant), and the application of estimation techniques
for evenly spaced time series would require some sort of

interpolation. Unfortunately, this procedure results in a
significant bias because interpolation in the time domain
alters the estimated spectrum of a time series by

enhancing the low-frequency components at the expense
of high-frequency components. That is, the estimated
spectrum of an interpolated time series becomes too

‘‘red’’ compared to the true spectrum (e.g. Schulz and
Stattegger, 1997).
We present a computer program which estimates the

AR1 parameter directly from unevenly spaced time

series, that is, without requiring interpolation. The
estimated AR1 model is then transformed from the time
domain into the frequency domain. Comparison of the

spectrum of the time series with that of the AR1 model
allows to test the hypothesis that the time series
originates from an AR1 process. Following a brief
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description of the numerical procedure and its imple-
mentation in a computer program, we apply the

program to a synthetic time series and a paleoclimatic
record.

2. Method

A discrete AR1 process r for times ti ði ¼ 1; 2;y;NÞ
with arbitrary spacing is given by (Robinson, 1977)

rðtiÞ ¼ ri rðti@1Þ þ eðtiÞ;
ð1Þ

ri ¼ exp @ðti@ti@1Þ=t
� �

:

The constant t is the characteristic time scale of the AR1
process (a measure of its ‘‘memory’’) and e indicates

‘‘white’’ Gaussian noise with zero mean and variance
s2e � 1@exp @2ðti@ti@1Þ=t

� �
. This value of s2e en-

sures that the AR1 process is stationary and has unit

variance. The spectrum GrrðfjÞ corresponding to the
time-domain process of Eq. (1) is (e.g. Percival and
Walden, 1993)

Grrð fjÞ ¼ G0
1@r2

1@2r cosðp fj=fNyqÞ þ r2
ð2Þ

where fj denotes discrete frequency up to the Nyquist
frequency fNyq (cf. Schulz and Stattegger, 1997) and G0 is
the average spectral amplitude. The ‘‘average autocor-

relation coefficient’’ r is calculated from the arithmetic
mean of the sampling intervals Dt ¼ ðtN@t1Þ=ðN@1Þ
as r � exp @Dt=t

� �
.

The unknown value of t is estimated from an
unevenly spaced time series using the least-squares
algorithm devised by Mudelsee (2002). The spectrum
of an irregularly spaced time series is determined

without the need for interpolation by means of the
Lomb–Scargle Fourier transform (Lomb, 1976; Scargle,
1982, 1989). Schulz and Stattegger (1997) presented a

computer program for this purpose which makes
additional use of the so-called Welch-overlapped-seg-
ment-averaging (WOSA) procedure (Welch, 1967). This

algorithms splits a time series into n50 segments which
overlap by 50%, the final spectral estimate is derived
from averaging the n50 periodograms.
With an estimate for t as well as an appropriate value

for G0 it should then be possible to overlay the red-noise
spectrum after Eq. (2) and the spectrum estimated from
the data. Provided that the probability distribution of

Grr at each frequency follows a w2 distribution (e.g.
Percival and Walden, 1993), it is finally possible to test if
the data spectrum is consistent with a red-noise model.

Unfortunately, this approach is hampered by an
inherent aspect of the Lomb–Scargle Fourier transform:
in contrast to the classical Fourier transform, the

individual Lomb–Scargle Fourier components are not
necessarily independent of each other and, as a

consequence, an estimated spectrum based on the
Lomb–Scargle transform may be biased (Lomb, 1976;

Scargle, 1982). In particular, spectral amplitudes at the
high-frequency end of a spectrum are often over-
estimated. Therefore, a red-noise spectrum Eq. (2) which

is based on an unbiased estimate of t for a given time
series will not necessarily coincide with the ‘‘Lomb–
Scargle spectrum’’ of the same time series. We therefore
seek for a bias correction for the Lomb–Scargle Fourier

transform.

3. Numerical procedure

The systematic deviation between a theoretical

red-noise spectrum Eq. (2) and one estimated from
an unevenly spaced time series by means of the
Lomb–Scargle Fourier transform depends on the

distribution of the sampling times in the interval
[t1, tN ] (Lomb, 1976; Scargle, 1982). For some
arbitrary distribution of sampling times the lack of an

analytical solution for the deviation prevents a direct
bias correction of a Lomb–Scargle spectrum. To
circumvent this problem, we turn to a Monte–Carlo
technique. Based on the actual sampling times, an

ensemble of Nsim AR1 time series is generated after
Eq. (1) with fixed t. The deviation of the average
spectrum of the ensemble from the known theoretical

spectrum is then employed for the required bias
correction. The computational steps to obtain a
red-noise spectrum of an unevenly spaced time series

xðtiÞ which is consistent with the estimated value of t are
as follows:

1. Estimate t from xðtiÞ using the time-domain
algorithm of Mudelsee (2002). If more than one WOSA
segment is used for spectral analysis (n50 > 1), an average

value for t is calculated from t estimates for each
individual segment. The individual t estimates (Mudel-
see, in press) are bias corrected, based on the number of
data points in each WOSA segment.

2. Estimate spectrum #GGxxð fjÞ of xðtiÞ in the interval

[0, fNyq] using the Lomb–Scargle Fourier transform as
described in Schulz and Stattegger (1997). Determine the
area under #GGxxð fjÞ which is an estimate for the variance
of xðtiÞ.

3. Monte Carlo simulation loop.
Repeat Nsim times

* create AR1 time series according to Eq. (1), using

the sampling times of the input data ðtiÞ, the
estimated t, and an independent set of eðtiÞ for each
simulation

* estimate spectrum of the generated AR1 time series,
#GGrrð fjÞ
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* scale #GGrrð fjÞ such that the area under the spectrum is
identical to the area under #GGxxð fjÞ

Determine arithmetic mean of the Nsim independent

red-noise spectral estimates #GGrrð fjÞ
� �

.

4. Calculate theoretical AR1 spectrum Grrð fjÞ for the
estimated value of t (Eq. (2)). (Note that Grrð fjÞ is not
affected by the bias of the Lomb–Scargle Fourier
transform, because the critical parameter t is estimated

in the time domain.)

5. Select G0 (see Eq. (2)) such that the area under

Grrð fjÞ is identical to the area under #GGxxð fjÞ. (This step is
required since the true noise variance of the process
under consideration is unknown.)

6. Calculate a correction factor cð fjÞ for the bias
adjustment of the Lomb–Scargle spectrum as cð fjÞ ¼
#GGrrð fjÞ

� �
=Grrð fjÞ:

7. Using cð fjÞ, determine a bias-corrected version of

the spectrum of the data as #GG
0
xxð fjÞ ¼ #GGxxð fjÞ=cð fjÞ:

8. For assessing the statistical significance of a spectral
peak, the upper confidence interval of the AR1 noise is
calculated for various significance levels (based on w2

distribution; degrees of freedom depend on the actual
spectral analysis setting; cf. Schulz and Stattegger,

1997). In addition, significance levels are calculated
from percentiles of the Monte Carlo ensemble.

9. Check appropriateness of the AR1 model to
describe xðtiÞ by testing the equality of Grrð fjÞ and
#GG
0
xxð fjÞ using a non-parametric runs test (Bendat

and Piersol, 1986).

The assumptions underlying this procedure are: (i)

The noise background recorded in a time series can
indeed be approximated by an AR1 process (tested in
step 9), that is, the potential effect of non-AR1 signal

components (e.g. harmonic signals) can be neglected.
Although it would be possible to identify and subtract
harmonic signal components prior to estimating t (see
Mann and Lees, 1996 for evenly spaced time series), this

approach may fail if there are quasi-periodic signals (e.g.
narrow-band noise), which often occur in climatic time
series. For most practical problems such refinement is

unwarranted because such signals cover only a small
portion of the entire frequency range and have only a
marginal effect on the estimated value of t (Gilman et al.,

1963). Situations in which non-AR1 features do affect

Fig. 1. Red-noise spectrum of synthetic AR1 data. Unevenly spaced AR1 time series (A) generated according to Eq. (1) with t ¼ 15 yr.

(B) Theoretical red-noise spectrum Grrð fjÞ based on estimated value of t (thick solid line). Lomb–Scargle spectrum of time

series #GGxxð fjÞ (thin dashed line; n50 ¼ 1; rectangular window) and average of Nsim ¼ 1000 simulated red-noise spectra #GGrrð fjÞ
� �

(thick

dashed line) deviate from expected shape of Grrð fjÞ, especially for f > 0:09 (1/yr). Correcting for this bias, inherent to spectral estimates

of unevenly spaced data, results in spectrum of time series #GG
0
xxð fjÞ (thin solid line) which is consistent with Grrð fjÞ. Note that spectral

amplitudes are plotted on logarithmic decibel [dB] scale.
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the estimation of t can be identified by visual inspection
of the resulting red-noise spectrum and the runs test of

step 9. (ii) The distribution of data points along the time
axis is not too clustered (Horne and Baliunas, 1986).
A computer program (REDFIT) that performs the

above steps is freely available via anonymous ftp from
ftp.rz.uni-kiel.de (file: /pub/sfb313/mschulz/redfit35.zip)
or from the IAMG server. The zip-archive includes
Fortran 90 source code, binaries for Windows 95 (or

above), program documentation and example files.
The program offers the same functionality for uni-
variate spectral analysis as the SPECTRUM program

(Schulz and Stattegger, 1997) and uses the same format
for input files. To cope better with the computational
demand of the Monte–Carlo simulation, the program

is command-line driven and can therefore be run in
batch mode.

4. Example computations

The first test signal is a pure AR1 process after Eq. (1)
with t ¼ 15 yr and N ¼ 324 data points (Fig. 1A). The

uneven time axis is generated by treating the time
interval between subsequent sampling times as a random

variable following a gamma distribution with 3 degrees
of freedom (which is a geologically realistic model;

Schulz and Stattegger, 1997). The estimated value for t
is 15 yr (90% confidence interval: 10oto20 yr). The
uncorrected Lomb–Scargle spectrum of the AR1 time

series, #GGxxð fjÞ, does not show the characteristic red-noise
shape, instead spectral amplitudes increase slightly for
f > 0:09 (1/yr) (Fig. 1B). As expected, the same holds
true for the mean, #GGrrð fjÞ

� �
, of the Nsim ¼ 1000 simu-

lated red-noise spectra (Fig. 1B). Compared to the
theoretical spectrum of the generated AR1 process,
Grrð fjÞ, (based on estimated value of t) the Lomb–

Scargle Fourier transform clearly overestimates the
spectral amplitudes for a large part of the spectrum
(Fig. 1B). Applying the bias correction (steps 6 and 7)

results in a spectral estimate #GG
0
xxð fjÞ which is, of course,

consistent with Grrð fjÞ (Fig. 1B). At the low-frequency
end of the spectrum we observe that #GG

0
xxð fjÞ > #GGxxð fjÞ.

This effect is caused by the finite length of the time
series, which leads to an underestimation of the spectral
amplitudes for periods exceeding the length of the time
series (independently of the spectral-analysis technique

being used and the spacing of the time axis). Thus, as a
side effect, the bias correction accounts also for this
problem inherent in all spectral analysis techniques.

Fig. 2. (A) Oxygen-isotope time series from Greenland GISP2 ice core (Grootes and Stuiver, 1997) between 15–60 thousand years

before present (kyr BP). (B) Bias-corrected spectrum of time series in (A) (thin solid line), theoretical red-noise spectrum based on

estimated t (thick solid line) and false-alarm level (99.6%, after Thomson, 1990). Spectral peak at period of 1470 yr (arrow) is

inconsistent with AR1 origin. Horizontal bar indicates 6-dB bandwidth (BW).
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In the second example, we investigate the glacial part
of the oxygen-isotope record from the GISP2 ice core

from Greenland (Grootes and Stuiver, 1997; Fig. 2A),
which reflects, to a large extent, air temperature above
Greenland. In the initial step of the analysis we

determine whether or not the spectrum of this time
series is consistent with a red-noise model. Based on the
periodogram of the time series (n50 ¼ 1; rectangular
window; cf. Schulz and Stattegger, 1997) and Nsim ¼
1000 Monte–Carlo simulations, the runs test indicates
that the AR1 model is indeed appropriate to character-
ize this record (5% significance level). The estimated

mean value of t is 310 yr with 90% confidence interval
240oto380 yr. Next we test if any non-AR1 compo-
nents can be identified in the time series. For this

purpose we repeat the analysis, but increase the number
of WOSA segments in the spectral analysis in order to
obtain a consistent spectral estimate (we refer the reader

to Schulz and Stattegger, 1997 for details of the spectral-
analysis technique). Setting n50 ¼ 4 and selecting a
Welch spectral window to reduce spectral leakage results
in the spectrum depicted in Fig. 2B. We scale the

theoretical red-noise spectrum by an appropriate per-
centile of the w2-probability distribution to obtain a
false-alarm level, which marks the maximum spectral

amplitude expected if the time series would have been
generated by an AR1 process. Accordingly, spectral
peaks exceeding the false-alarm level indicate non-AR1

components in a time series, and should be considered
significant. We follow Thomson (1990) and select a
false-alarm level of ð121=nÞ � 100%, where n is the
number of data points in each WOSA segment. For the

example at hand, a false-alarm level of 99.6% results. At
this level the spectrum indicates the presence of a single
peak at f ¼ 1=ð1470 yrÞ which is not consistent with the

red-noise model. This spectral peak is associated with
the so-called Dansgaard–Oeschger oscillations, the
dominant mode of millennial-scale climate fluctuations

during the last glacial period (e.g. Grootes and Stuiver,
1997). However, care should be taken when interpreting
these results because the assumption of weak stationar-

ity of the time series may be violated.

5. Conclusions

We present a computer program (REDFIT) for
testing whether or not the red-noise shape, often

observed in paleoclimatic time series, is consistent with
the generation by a first-order autoregressive (AR1)
process. In contrast to existing approaches, REDFIT

allows direct processing of unevenly spaced time series
and, hence, the usual prerequisite of data interpolation is
not required. Since interpolation of an unevenly spaced

time series is equivalent to low-pass filtering, reddening
of an estimated spectrum will result and consequently a

biased test result may be the outcome. As an aside, by
correcting for the effect of correlation between Lomb–

Scargle Fourier components, the program removes the
bias of this Fourier transform for unevenly spaced data.
A real-world example demonstrates the capability of

REDFIT to detect spectral feature not consistent with
an AR1 origin. Although REDFIT indicates whether or
not the main assumption (i.e., adequacy of the AR1
model) is violated, the program should not be used as

black-box tool without checking the structure of a time
series prior to its analysis.
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